Benner
إحسان فلاح بيرم ( مدرس )
كلية الصيدلة - صيدلة عام
[email protected]
 
 
 
On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.
تحميل
بحث النوع:
صيدلة التخصص العام:
Rasool MI اسم الناشر:
Bairam AF, Kurogi K, Liu MC اسماء المساعدين:
Pharmacol Rep الجهة الناشرة:
69(5):953-958  
2017 سنة النشر:

الخلاصة

Abstract BACKGROUND: Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. METHODS: The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. RESULTS: Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. CONCLUSION: SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans.